The Diamond Lemma for Power Series Algebras
نویسنده
چکیده
The main result in this thesis is the generalisation of Bergman’s diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds. There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a realvalued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation. The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff ) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders. Mathematics Subject Classification: primary S; secondary F, P, W, W, W, M, F, H.
منابع مشابه
Composition-Diamond Lemma for Differential Algebras
In this paper, we establish the Composition-Diamond lemma for free differential algebras. As applications, we give Gröbner-Shirshov bases for free Lie-differential algebras and free commutative-differential algebras, respectively.
متن کاملComposition-Diamond lemma for associative n-conformal algebras
In this paper, we study the concept of associative n-conformal algebra over a field of characteristic 0 and establish Composition-Diamond lemma for a free associative n-conformal algebra. As an application, we construct Gröbner-Shirshov bases for Lie n-conformal algebras presented by generators and defining relations.
متن کاملComposition-Diamond Lemma for Tensor Product of Free Algebras
In this paper, we establish Composition-Diamond lemma for tensor product k〈X〉⊗k〈Y 〉 of two free algebras over a field. As an application, we construct a GröbnerShirshov basis in k〈X〉 ⊗ k〈Y 〉 by lifting a Gröbner-Shirshov basis in k[X]⊗ k〈Y 〉, where k[X] is a commutative algebra.
متن کاملComposition-Diamond lemma for λ-differential associative algebras with multiple operators
In this paper, we establish the Composition-Diamond lemma for λ-differential associative algebras over a field K with multiple operators. As applications, we obtain Gröbner-Shirshov bases of free λ-differential Rota-Baxter algebras. In particular, linear bases of free λ-differential Rota-Baxter algebras are obtained and consequently, the free λ-differential Rota-Baxter algebras are constructed ...
متن کاملOn Monic Gröbner Bases in Free Algebras over Rings Stemming from Bergman’s Diamond Lemma
Let R be an arbitrary commutative ring and R〈X〉 = R〈X1, ..., Xn〉 the free algebra of n generators over R. Note that Bergman’s diamond lemma characterizes the resolvability of ambiguities of monic relations of the form Wσ − fσ with fσ a linear combination of monomials ≺ Wσ, where ≺ is a semigroup partial ordering on 〈X〉; and that in the algorithmic language of Gröbner basis theory over a ground ...
متن کامل