The Diamond Lemma for Power Series Algebras

نویسنده

  • Lars Hellström
چکیده

The main result in this thesis is the generalisation of Bergman’s diamond lemma for ring theory to power series rings. This generalisation makes it possible to treat problems in which there arise infinite descending chains. Several results in the literature are shown to be special cases of this diamond lemma and examples are given of interesting problems which could not previously be treated. One of these examples provides a general construction of a normed skew field in which a custom commutation relation holds. There is also a general result on the structure of totally ordered semigroups, demonstrating that all semigroups with an archimedean element has a (up to a scaling factor) unique order-preserving homomorphism to the real numbers. This helps analyse the concept of filtered structure. It is shown that whereas filtered structures can be used to induce pretty much any zero-dimensional linear topology, a realvalued norm suffices for the definition of those topologies that have a reasonable relation to the multiplication operation. The thesis also contains elementary results on degree (as of polynomials) functions, norms on algebras (in particular ultranorms), (Birkhoff ) orthogonality in modules, and construction of semigroup partial orders from ditto quasiorders. Mathematics Subject Classification: primary S; secondary F, P, W, W, W, M, F, H.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition-Diamond Lemma for Differential Algebras

In this paper, we establish the Composition-Diamond lemma for free differential algebras. As applications, we give Gröbner-Shirshov bases for free Lie-differential algebras and free commutative-differential algebras, respectively.

متن کامل

Composition-Diamond lemma for associative n-conformal algebras

In this paper, we study the concept of associative n-conformal algebra over a field of characteristic 0 and establish Composition-Diamond lemma for a free associative n-conformal algebra. As an application, we construct Gröbner-Shirshov bases for Lie n-conformal algebras presented by generators and defining relations.

متن کامل

Composition-Diamond Lemma for Tensor Product of Free Algebras

In this paper, we establish Composition-Diamond lemma for tensor product k〈X〉⊗k〈Y 〉 of two free algebras over a field. As an application, we construct a GröbnerShirshov basis in k〈X〉 ⊗ k〈Y 〉 by lifting a Gröbner-Shirshov basis in k[X]⊗ k〈Y 〉, where k[X] is a commutative algebra.

متن کامل

Composition-Diamond lemma for λ-differential associative algebras with multiple operators

In this paper, we establish the Composition-Diamond lemma for λ-differential associative algebras over a field K with multiple operators. As applications, we obtain Gröbner-Shirshov bases of free λ-differential Rota-Baxter algebras. In particular, linear bases of free λ-differential Rota-Baxter algebras are obtained and consequently, the free λ-differential Rota-Baxter algebras are constructed ...

متن کامل

On Monic Gröbner Bases in Free Algebras over Rings Stemming from Bergman’s Diamond Lemma

Let R be an arbitrary commutative ring and R〈X〉 = R〈X1, ..., Xn〉 the free algebra of n generators over R. Note that Bergman’s diamond lemma characterizes the resolvability of ambiguities of monic relations of the form Wσ − fσ with fσ a linear combination of monomials ≺ Wσ, where ≺ is a semigroup partial ordering on 〈X〉; and that in the algorithmic language of Gröbner basis theory over a ground ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002